1m/CHE-100 (Th) Syllabus-2023

2024

(April)

FYUP: 1st Semester Examination

MINOR COURSE

CHEMISTRY: CHE-100

[Part—A (Introductory Chemistry—I)]

(Theory)

Marks: 56

Time: 3 hours

The figures in the margin indicate full marks for the questions

UNIT-I

(Inorganic Chemistry-I)

(Marks: 18)

- 1. (a) Write down the postulates of Bohr's atomic model.
 - (b) What do you mean by dual nature of matter and radiation? Derive the de Broglie's equation for matter waves.

1+2=3

3

	(c)	What is the variation of atomic radii in a periodic table?	2
	(d)	Explain the term 'electronegativity'. On what factors the electronegativity of an atom depends?	2
		OR	
2.	(a)	Describe the shapes of the s- and ρ - orbitals with respect to the three coordinate axes.	3
	(b)	Write down the Schrödinger wave equation. Explain the various terms involved in the wave equation.	3
	(c)	Explain the variation of electron gain enthalpy across the period and down the group.	2
	(d)	Give the appropriate reasons for the following observations: (i) Size of Na ⁺ is smaller than that of Na.	2
		(ii) Ionization potential of N is greater than O.	
3.	(a)	According to the valence bond theory, what type of orbitals can overlap to form a covalent molecule? What are the	
		limitations of the valence bond theory?	3
CAP	Imne		

(b)	Using VSEPR theory, draw the geometries
	of the following molecules/ions:
	(i) NH ₃
	(ii) BF ₃
	, ,
	(iii) H ₃ O⁺
(c)	On the basis of molecular orbital theory,
, ,	explain why O2 is paramagnetic while
	C ₂ is diamagnetic. 2
	OR
4. (a)	Answer/Explain the following by giving
. ,	reasons: 1½×2=3
	(i) Out of NaCl and MgO, which has
	higher lattice energy?
	(ii) Dipole moment of NH3 is higher
	than NF ₃ .
(b)	What is ion polarization? Giving reasons
(2)	write which cation in the following pairs
	will have greater polarizing power:
	1½×2=3
	(i) Na ⁺ and Cu ⁺
	(ii) Sn ²⁺ and Sn ⁴⁺
	(u) Sn and Sn
(c)	Discuss the Born-Haber cycle for the
1-7	formation of NaCl. 2
24D /799	(Turn Over)

UNIT-II

(Organic Chemistry-I)

(Marks: 19)

5. (a) Write the IUPAC names of the following compounds: 1×3=3

$$\begin{array}{c} \text{CH}_3 \ \text{C}_2\text{H}_5 \\ | \ | \ | \ | \ \text{CH}_3 - \text{CH}_- \text{CH}_- \text{CH}_2 - \text{CH}_3 \\ \hline \text{(ii)} \ \text{CH}_3 - \text{CH}_- \text{CH}_2 - \text{C}_- \text{H} \\ \end{array}$$

- (b) Draw the resonance structures of phenol. 2
- (c) Why are alcohols soluble in water under all proportions?
- (d) What is the hybridization of the underlined atoms in each of the following compounds?

(i)
$$CH_3$$
 CH_3 (ii) CH_3 — NH_2

(iii)
$$\overset{\text{CH}_3}{\underset{\text{CH}_3}{\sim}} = \underline{\text{C}} = \text{O}$$
 (iv) $\overset{\oplus}{\underset{\text{C}}{\sim}} \text{H}_3$

(e) How does cyclopropane react with chlorine?

OR

6. (a) Draw the molecular orbital diagram of the following molecules and predict their hybridization and bond length:

1½×2=3

2

2

1

(i) $\overset{\Theta}{\mathsf{C}}\mathsf{H}_3$ (ii) $\mathsf{C}_2\mathsf{H}_2$

(b) How does hydrogen bonding affect the boiling points of compounds?

(c) Classify the following as electrophiles and nucleophiles:

 H_2O , EtO, H_3O , $ZnCl_2$

- (d) Draw the hyperconjugating structures of propene.
 - e) Write down the Wurtz-Fittig method for preparation of alkanes.
- 7. (a) What are the postulates of Baeyer's strain theory?
 - (b) Complete the following reactions: $\frac{1}{2} \times 2 = 1$ (i) $+ \text{HCl} \longrightarrow ?$

(ii) CH₃CH₂Br 2Na, ether ?

24D/799

(c) State Markovnikov's rule with suitable example. Complete the following reactions:

Write short notes on the following:

11/2×2=3

2

(i) Polymerization of ethene

(ii) Hydroxylation of alkene

OR

8. (a) How will you prepare alkanes by Corey-House reaction? 2

(b) What is cracking? Explain taking suitable examples. 11/2

Write the correct products of the following reactions: 2+1=3

(i)
$$CH_3$$
 CH_2 CH_3 CH_2 CH_3 $CH_$

(ii)
$$CH_2=CH_2 \xrightarrow{Ag_2O} ?$$

Write down the missing products in the following reactions:

(i)
$$HC = CH + HC = CH - \frac{Cu_2Cl_2}{NH_4Cl} > ?$$

(ii)
$$H_3C$$
 C=CH₂ + H₂O $\xrightarrow{H^{\oplus}}$?

(iii) 3CH₂CH=CH₂ + BH₂ → ?

UNIT-III

(Physical Chemistry—I)

(Marks: 19)

What is compressibility factor of a gas? Show graphically the variation of compressibility factor with pressure at a constant temperature for real gases.

> Give the relationship between rootmean-square velocity and absolute temperature of a gas.

> Calculate the root-mean-square velocity of oxygen gas at 27 °C.

Derive the Bragg's equation for X-ray diffraction of crystals.

OR

Derive the following gas laws from **10.** (a) kinetic gas equation: $2 \times 2 = 4$

(i) Boyle's law

(ii) Charles' law

Explain the following:

24D/799

 $1 \times 3 = 3$

2

3

(i) Primitive cubic lattice

(ii) Body-centred cubic lattice

(iii) Face-centred cubic lattice

(Turn Over)

(Continued)

3

24D/799

	(c)	What are the causes of deviation of real gases from ideal behaviour?
11.	(a)	Discuss the effect of temperature on the reaction rate.
	(b)	What are pseudo-first-order reactions? Give example.
	(c)	Define the following terms: 1×2=2 (i) Vapour pressure (ii) Viscosity of a liquid
	(d)	Discuss the effect of additive (ethanol) on the surface tension of a liquid.
		OR
12.	(a)	Write the Arrhenius equation and explain the terms involved. Why is the Arrhenius constant called the frequency factor? 2+1=3
	(b)	Define rate of reaction and rate constant. 1+1=2
	(c)	Give a qualitative description of the structure of liquids.
	(d)	Define zero-order reaction.
		* * *